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Motivation

Motivation

How Bitcoin’s Ascent Stacks Up
The cryptocurrency’s rally tops historical asset bubbles
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Note: Starting price is the price three years prior to each asset's high, or the earliest available price
in cases with fewer than three years of data.
Source: Bloomberg, International Center for Finance at Yale School of Management, Peter Garber Bloomberg

Figure: Bitcoin growth in comparison to past financial bubbles
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Model 3-1

Wealth equation

[ Wealth for investment horizon T € N and k € N1 assets,
given initial wealth Wy € RT

T k
ft)—vvoH L+ fieXie
t=1 j=1

I (14 7) = e [T { s
t=1 t=1

[J Discrete / log returns X; = [Xq,..., X1, X,]" / )?t
(] Risk free rate X, = X, ¢ R
[J Investment fractions f; = [fi, ..., fi_1,f]"

(1)




Model 3-2

Markowitz

[ One risky asset (Bitcoin) and one risk-free asset, k = 2
[J Markowitz optimization (two-stage investment process)

f* = argmaxE{W(f)} (2)
feR?

gives under EX > X,
f* = [0, —o0], (3)
[J But: For the multi-stage investment process (Thorp, 1971)
P{Wr(f") =0} =1 (4)




Model

Kelly

[ Kelly optimization (multi-stage investment process)

f* = argmax E [log {Wr(f)}].
feRr?

» Myopic log-optimal strategy A* = [f*,..., f*]
» Significantly different strategy A
E {log Wr(A")} — E{log Wr(A)} — ox,
» Kelly investor dominates asymptotically (Breiman, 1961)

lim WT(/\*) a.s.
T—o0 WT(/\)
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Model 3-4

Markowitz vs. Kelly
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Figure: Arithmetic and geometric mean maximization
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Data
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Figure: High-frequency data-set of Bitcoin from 07-2016 till 11-2017




Data 4-2

Top 10 tail events within 5 minutes

Surge  Drawdown

1 18.48 —22.35
2 13.04 —15.12
3 11.45 —11.00
4 8.83 —10.69
5 7.32 —8.92
6 6.72 —7.80
7 6.69 —7.71
8 5.82 —7.68
9 5.70 —7.41
10 5.11 —5.51

Table: Top ten surges and drawdowns in the 5-minute frequency (in %)




Data 4-3

Heavy Tails

Kurtosis
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Figure: Sample kurtosis over sampling frequencies with bootstrapped
sample kurtosis (red)




Data 4-4

Heavy Tails
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Figure: Stability exponent a. over sampling frequencies




Estimation
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Kelly under Gaussianity (a«=2)
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Figure: Optimal growth portfolio
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Estimation 5-2

Kelly under o — stability
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Figure: Optimal growth portfolio
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Estimation 5-3

Kelly under o — stability
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Figure: Optimal growth portfolio
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Estimation 5.4

Volatility induced growth
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Figure: Geometric and arithmetic returns for Bitcoin




Estimation

Kelly under o — stability
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Figure: Optimal growth portfolio
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Estimation

Kelly under o — stability

5-6
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Estimation 5-7

Volatility induced growth

[ Modelling log-returns X; ~ N(i,) under Gaussianity (a = 2)

[-] "Even if the growth rates of the individual securities all have
mean zero, the value of a fixed-mix portfolio tends to infinity
with probability one." (Dempster, Evstigneev and
Schenk-Hoppe; 2006)

(] Transformation to discrete returns for portfolios

X: = exp ()N(t> ~ log N(p, o), (8)

[ = exp </7 + 5;) (9)




Estimation 5-8

Stability induced growth

[ Modelling log-returns X; ~ S(a, Eﬁ,g) under a-stability
(1 For 1 < a < 2, growth can be driven by stability

(] Transformation to discrete returns for portfolios

X = exp (X ) ~ logS(a, 3,7,9), (10)

5 = exp (g—i- 3+ g(&)) (11)




Estimation

Parameter importance

[J Gaussianity (Chopra and Ziemba, 2001)
> u=o>-p
[] Stability

?
> -y a>=p
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Estimation 5-10

Investment table, o =2

] Annual investment horizon

w/ o 100 140 180 220 260

5 2.59 0.75 0.20 0.05 0.01
10 5.98 1.94 0.58 0.15 0.03
20 13.63 4.56 1.54 0.50 0.13
50 37.55 14.10 5.25 1.85 0.59
100 71.30 3042  12.53 4.97 1.72

Table: Optimal investment fractions given location and scale (in %)




Estimation 5-11

Investment surface, a =2

Geometric mean

Figure: Optimal investment fractions given location and scale (in %)
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Estimation 5-12

Outlook

[] Investigation of closed form solution for Kelly under a-stability
[] Mean representation for log-stable distributions

[ Relative portfolio importance of the underlying parameters




Appendix

Finite variance (one-dimensional)

[J X ~ F with E(X) = p and Var(X) = o2
[] Return of the risk free asset r > 0

[] Wealth given investment fractions and restriction Zjlle fi=1

W(f)=Wo {1+ (1—f)r+ X}
=Wo{l+r+f(X—-r)}

6-1



Appendix 6-2

Finite variance (one-dimensional)

(] Maximize
g(f) = Eflog Wr(f)} =E{G(f)} = Elog {Wr(f)/Wo}
(14)
(] Wealth after n periods
-

Wr(f) = Wo [T {1+ r+f(X:—r)} (15)
t=1

[] Taylor expansion of

E [Iog { W\/T\/Ef) H _E [i og{1+r+fXe—n}|  (16)

t=1




Appendix 6-3

Finite variance (one-dimensional)

] Given |og(1+x):x—§+...
{r+fxX=ny?

log{l+r+f(X—r}=r+f(X—-r) 5
(17)
X2f2
~r+f(X—r)— 5 (18)
[] Taking sum and expectation
T o2f2
E ;Iog{l—i-r—i-f(Xt—r)} ~r+f(un—r)— ”2
(19)

[] Myopia: taking Zthl X; has no impact on the solution




Appendix 6-4
Finite variance (one-dimensional)
[ Result of the Taylor expansion

g(f)=r+f(u—r)—a?f2/2+0(n?). (20)

[J For n — oo, O(n1/2) — 0

goolf) = r+f(u—r) —of2)2. (21)
[ Differentiating g(f) according to f
agOO(f)_ 27 « _ B
T =pu—r—of=0=%f" = 3 =0 MPR (22)
[] Betting the optimal fraction f* leads to growth rate
* (/’L — r)2
8o(f*) = = +r. (23)

[) goo(f) is parabolic around f* with range 0 < f* < 2f*
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